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SUBREGIONS OF MOTION AND ELLIPTIC HALO ORBITS IN
THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM

Stefano Campagnola ∗ , Martin Lo † and Paul Newton ‡

In this paper we present regions of motion and periodic orbits in the spatial elliptic
restricted three body problem (ER3BP). Periodic orbits and regions of motion are
fundamental keys to understand any dynamical system; for this reason the Hill’s
surfaces or the families of halo orbits have been extensively studied in the frame
of the circular restricted three body problem. It is our opinion that their natural
extensions to the ER3BP have not been studied enough. We divide the position
space into forbidden subegions, subregions of motion and low-velocity subregions.
We use these notions to define necessary condition for a transfer trajectory in the
ER3BP. Also we compute branches of elliptic halo orbits bifurcating from halo orbits
in the circular restricted three body problem. The new periodic orbits have principal
periods and stability properties different from those of the originating halo orbit.

INTRODUCTION

In the last decades, several authors studied low-energy transit trajectories to achieve large saving

in fuel costs or to provide a temporarily stable orbit in case of failure of the orbit insertion.1 In

many cases the model of the circular restricted three-body problem (CR3BP) was used to explore

the solution space,2 and inspired very challenging mission design.

The CR3BP studies the motion of an infinitesimal body under the gravitational attraction of two

massive bodies (primaries) in circular motion around their center of mass. Choosing a rotating

reference frame that keeps the position of the primaries fixed results in a set of autonomous ordinary

differential equations. The dynamical system is Hamiltonian with the Hamiltonian as integral of

motion. The existence of a first integral helps define regions of motion and families of periodic

orbits with their stable and unstable manifolds. Those are key elements to understand any dynamical

system.

However, the motion of the planets in the solar system is better approximated by elliptic orbits,

with eccentricity varying from 0.01 up to 0.2 (for the Sun-Mercury system). The elliptic restricted

three-body problem (ER3BP) takes into account the eccentricity of the orbit of the primaries, and

it is therefore a more accurate model than the CR3BP. Yet the ER3BP has not been studied much,

because it is a more complex system than the CR3BP. The equations of motion of the ER3BP are

non-autonomous because the distance between the primaries varies in time. The system does not

possess an integral of motion (although it may when averaged appropriately3), which suggests that

the ER3BP is a dynamical problem different from the CR3BP.

For instance, the CR3BP model allows one to compute families of periodic orbits, although no

real periodic orbit exists in the real solar system. The ER3BP shows that only discrete periodic or-
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bits exist for e �= 0 , with a well determined period, rather than families with continuously varying

periods. These solutions are (almost) periodic also in the ephemeris model: Figure 1 shows a peri-

odic orbit in the sun-Mercury system, integrated in the ER3BP (solid line) and in the full ephemeris

(dotted line, one dot per day). We call this periodic orbit an elliptic halo orbit since it is computed

from continuation of a halo orbit in the CR3BP into the ER3BP.

Figure 1 Periodic orbit in the Sun-Mercury system. We call these orbits elliptic
halo orbits, as they are computed starting from halo orbits in the CR3BP . The left
plot is in the rotating reference frame, the right plot is in the Mercury equatorial
reference frame. the mercury equatorial reference frame is an inertial frame centered
in Mercury. The solid line is the trajectory integrated in the ER3BP, the dotted line
is the trajectory integrated with full ephemeris (one dot per day). This shows the
ER3BP is a very accurate model for trajectories in the Sun-Mercury system.

The ER3BP should be used in the preliminary or PhaseA space mission trajectory design, if the

eccentricity of the system under study is too large to use the CR3BP. Trajectories like the Bepi-

Colombo gravitational capture at Mercury are designed in the ER3BP and are explained using man-

ifolds of quasi-periodic orbits in the ER3BP4 (Figure 2).

In an effort to better understand the differences between the CR3BP and the ER3BP, this paper

describes some of the important feature of the ER3BP: regions of motion and periodic orbits. The

main approach consists in considering the eccentricity e as a continuation parameter: For e = 0 the

equations of motion reduce to the CR3BP.

The first section briefly recalls the regions of motion and the periodic orbits in the CR3BP. In the

second section we introduce the equations of motion of ER3BP isolating the terms containing the

eccentricity. In the third section we discuss the properties of the pulsating zero-velocity surfaces

and define new subregions of motion for the elliptic problem. The forbidden subregions, subregions

of motion and low-velocity subregions are bounded by pulsating surfaces. In the last section we

compute branches of periodic orbits at different e, bifurcating from special halo orbits in the CR3BP.

We show that the stability properties change as soon as e �= 0, and we believe that a countable

infinity of bifurcations occur at e = 0, filling the bifurcation diagram with infinitely many (although

discrete) branches. This provides some insight on the existence and stability of the quasi-periodic



Figure 2 The BepiColombo gravitation capture trajectory at Mercury shadows man-
ifolds of quasi-periodic orbits in the elliptic restricted three-body problem (ER3BP).4
In this xy projection in the rotating reference frame, the BepiColombo trajectory is
the bold dash curve, the quasi periodic orbit is the bold solid curve, and the manifolds
are the thin curves. A better understanding of the key feature of the ER3BP helps
designing missions for planets like Mercury.

halo orbits in the full ephemeris model.

BACKGROUND

In this section we briefly recall some key features of the circular restricted three body problem.5 In

the general restricted three-body problem, an infinitesimal particle m3 moves under the gravitational

attraction of two primaries m1and m2 (m3 � m2 < m1), without affecting them. The motion of

m3 is usually described in a special reference frame, where the position of the primaries is fixed

along the x − axis (also called the syzygy axis) and their mutual distance is normalized to 1; the

z-axis is perpendicular to the primary orbit, and we call the xz plane the normal plane.

Finally, when writing the equations of motion the true anomaly of the primaries is the preferred

independent variable instead of time.

In the circular restricted three body problem (CR3BP), the primaries moves on circular orbits,

and the motion of m3 is the solution of the following autonomous system of ordinary differential

equations (ODEs):
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√

(x − μ)2 + y2 + z2 and r1 =
√

(x − μ + 1)2 + y2 + z2 are the distances to the

primaries, and μ = m2/m1 is the mass parameter.

The system has five fixed points xLi, i = 1, . . . 5 , the Lagrangian points (also called Libra-

tion points). The positions of the Lagrangian points depend on the parameter μ. The system also

possesses one integral of motion, the Jacobi constant ∗:

JC = 2ΩC − V 2
C (2)

where V 2 =
(
ẋ2 + ẏ2 + ż2

)
.

Transfer trajectories are possible only if JC < JL1, where JL1(μ) is the Jacobi constant associ-

ated to the first Libration point.

Zero Velocity Surfaces

Hill used Eq. (2) to define zero-velocity surfaces which separate regions of motion from the

forbidden regions.6 Given a set of initial condition (t0,x0), Hill’s zero-velocity surfaces are level

sets of 2ΩC :

2ΩC = JC(x0)

If the initial conditions are such that JC < 3, the motion of the third body in the xy plane

is unbounded. If the initial conditions are such that JC > JL1, the motion of the third body is

bounded around either of the primary, or far away from both. Figure 3 shows the zero-velocity

surfaces for the Pluto-Charon system.

Periodic Orbits

A fundamental step in understanding any dynamical system is to identify its periodic orbits and

classify their linear and nonlinear stability.7 For a fixed value of the mass parameter μ, the CR3BP

possesses families of periodic orbits parametrized by the Jacobi constant JC , as implied by the

Cylinder Theorem:8

∗The Hamiltonian H, which is time-independent and is therefore an integral of motion, is related to the Jacobi con-

stant: 2H = −JC + μ (1 − μ).



Figure 3 Level sets of the function 2Ω in the Pluto-Charon system (μ � 0.123). In
the circular restricted three-body problem, the level sets are the Hill’s zero-velocity
surfaces, and separate regions of motion from the forbidden regions.

An elementary periodic orbit of a system with an integral I lies in a smooth cylinder

of solutions parametrized by I .

Several authors computed families of periodic orbits in the CR3BP.9, 10, 11, 12, 13 In this work we

use orbits of the halo orbit families. Their linear stability is determined by computing the linear map

ϕC : δx(t0) → δx(T + t0) = Mδx(t0)

between consecutive crossings through a Poincare section. Here δx(t0) is an arbitrary initial

perturbation of the state x = [x, y, z, u, v, w], M is the monodromy matrix and T is the principal

period of the orbit. The stability of the map ϕ, and hence of the orbit, is related to the eigenvalues λ
of the monodromy matrix M : eigenvalues inside the unit circle (λ < 1) are associated to the stable

manifold Ws ; eigenvalues outside the unit circle are associated to the unstable manifold Wu ; and

pure imaginary eigenvalues are associated with tori of quasi periodic orbits.

In the restricted three-body problem, the eigenvalues λ of the monodromy matrix come in recip-

rocal pairs, so that the periodic orbit is linearly stable if and only if all the eigenvalues are on the

unit circle. Also, in the CR3BP two eigenvalues are real unitary, and are associated to eigenvectors

δx0 tangent to the trajectory: because the system is autonomous, such perturbation corresponds to

a small phase change along the orbit.

SPATIAL ELLIPTIC RESTRICTED THREE-BODY PROBLEM

In the elliptic restricted three body problem the two primaries move on elliptic orbits around their

barycenter. Unlike the CR3BP, the ER3BP is a non-autonomous system of ODE’s. The eccentricity

e of the orbit of the primaries appears as a parameter. The motion of the third body m3 is usually

described in a pulsating reference frame, where the position of the primaries is fixed along the

x−axis (the syzygy axis) and their mutual distance is normalized to 1; as in the CR3BP, we define

the the normal plane as the plane throught the x-axis perpendicular to the primary orbit. Again, the



true anomaly of the primaries is the preferred independent variable instead of time. The system of

ODE’s can be written in the following form:

⎧⎪⎨
⎪⎩

ẍ − 2ẏ = ∂ΩC
∂x − e cos f

1+e cos f
∂Ω∗
∂x

ÿ + 2ẋ = ∂ΩC
∂y − e cos f

1+e cos f
∂Ω∗
∂y

z̈ = ∂ΩC
∂z − e cos f

1+e cos f
∂Ω∗
∂z

(3)

Ω∗(x, y, z) = ΩC +
1
2
z2

Here we isolated the term e cos f
1+e cos f which is the only one containing the independent variable

as well as the eccentricity. For e = 0, the equations of motion of the ER3BP reduce to Eq. (1);

therefore solutions of the CR3BP are also solutions of the ER3BP when the eccentricity vanishes.

In fact we will show that some special solutions of the CR3BP can be continued to the ER3BP using

the eccentricity as continuation parameter, and that a bifurcation occurs at e = 0.

The Lagrangian points are also fixed points for the ER3BP. However, it is not possible to find

an integral of motion because the equations of motion (and the Hamiltonian H) depend explicitly

on the independent variable f . The constant of integration, which was the Jacobi constant in the

CR3BP, is now replaced by:

JE = 2ΩC − V 2 − (A + I) = JC − (A + I) (4)

where we introduced an integral term I and a pulsating term A

†

I = 2
∫ f

f0

Ω∗ e sin f

(1 + e cos f)2
df

A = 2Ω∗ e cos f

1 + e cos f

Note that JE is not an integral of motion for the ER3BP as it is no longer constant along a

trajectory, but depends on the initial x(t0) and the initial true anomaly, f0. However, Eq (4) is

actually a function f as well. The interesting thing is that JE(f0,x(f0), f) is a constant, equal to

JE(f0,x(f0), f). However, choosing different initial conditions within the same trajectory results

in different JE’s: we cannot uniquely associate a trajectory to a single value of JE . This is one of

the important consequence of the loss of the integral of motion in the ER3BP when e �= 0. In the

rest of the paper we will discuss how this loss affects the forbidden regions and the periodic orbits.

† In literature: 8><
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SUBREGIONS OF MOTION

From the definition of the constant of integration JE , the velocity squared is given by:

V 2 = 2ΩC − A − I − JE

Given a set of initial condition , zero-velocity surfaces in the ER3BP are the level sets of the

function:

2ΩC − A − I = JE(f0,x0) (5)

The forbidden region is the set Ff = {(x, y, z)|(2ΩC − A − JE) < I} and the region of mo-

tion is the set Af = {(x, y, z)|(2ΩC − A − JE) > I}, where the subscript f indicates that the set

changes with the true anomaly.

In this section we discuss the quasi-steady approach, first proposed by Szebehely5 to compute

approximate zero-velocity surfaces, and then introduce an alternative approach leading to the defi-

nition of subregions of motions.

Pulsating Zero-Velocity Surfaces

Because of the integral term I , Eq. (5) cannot be solved for (x, y, z) at a time f1 �= f0. The

quasi-steady approach neglects the integral term when |f1 − f0| = δf is sufficiently small. The

quasi-steady approach was formulated for the planar ER3BP and it is often used assuming small

out-of-plane motion. Eq. (5) then becomes

2ΩC

1 + e cos (f)
= 2ΩC − A = JE

At each instant f∗ ∈ [f0, f1], the level set of 2ΩC = JE(1 + e cos f∗) defines new zero-velocity

surfaces‡. Because of the cos f∗ term, these surfaces get closer and further to the primaries (in the

non-dimensional reference frame) as the true anomaly f goes from −π to π. Thus they are usually

referred to as pulsating zero-velocity surfaces.

Yet even for very small δf the quasi-steady approach can result in very large errors. Figure 4

shows an orbit with period 2π in the Sun-Mercury ER3BP. At f0 = π the third body is on the x-axis

with zero velocity; thus the initial zero-velocity surfaces include the initial position. After just a few

instants, the zero-velocity surfaces shrinks to half their initial initial sizes, and the forbidden regions

now include the instantaneous third body location.

Figure 5 explains this paradox showing that the neglected integral term I (computed numerically)

is of the same order of magnitude of the pulsating term A; in fact the two terms almost cancel each

other out. This suggests that at least in some cases the pulsating behavior is a spurious consequence

introduced by the approximation.

When the third body is at equilibrium , for instance, the zero-velocity surface is the invariant set

containing the equilibrium point. At any instant f the integral term I and the pulsating term A cancel

‡For z �= 0 the zero-velocity surfaces are the level sets of 2ΩC − z2e cos f∗ = JE(1 + e cos f∗)



Figure 4 Pulsating zero-velocity surfaces in the Sun-Mercury system. fMe is the true
anomaly of Mercury. At time fMe = 180o the initial velocity is zero; the zero-velocity
surfaces are tangent to the initial point. However, after just a few instant the pulsating
surfaces have shrunken to half their size, while the third body has barely moved.

Figure 5 The integral term I (numerically computed) and the pulsating term A of
the constant of integration JE for the periodic orbit of Figure 4 as function of the true
anomaly of Mercury. When summed together, the integral term almost cancel the
pulsating term. Neglecting the integral term results in a large artificial pulsation of
the constant of integration JE , hence to the pulsating zero-velocity surfaces.

each other (except for a constant term). By neglecting the integral term, however, the quasi-steady

approach creates artificial zero-velocity surfaces which pulsates periodically. This pulsation is an

over-estimation of either the regions of motion or the forbidden regions. Even if the third body is

in equilibrium at L1, for instance, we can find forbidden regions that include the current position of

the spacecraft L1, or regions of motion that open up at L2 .

Forbidden Subregions, Subregions of Motion and Low-Velocity Subregions

We propose an alternative approach which yields the definition of under-estimated regions of

motion and forbidden regions. In between them we define a region which include the zero-velocity

surfaces which we call low-velocity region .

First we note that the integral term I(f ; f0) has local minima and maxima at each planet pericen-



ter and apocenter respectively. In fact§:

dI

df
= 0 → f̄ = nπ (6)

and:

d2I

df2

∣∣∣∣
f=nπ

= (−1)n k (k > 0) (7)

Hence even if the integral term cannot be computed without the knowledge of the full solution

x(t), we can still evaluate its upper and/or lower boundaries for any finite interval of true anomaly.

If the initial condition x0 is given at f0 = 0, Eq. (6) and Eq. (7) imply I(f ; f0) ≥ 0 for all

f ∈ [−π, π]. We can then define the subset

F∗
f ⊂ Ff , F∗

f =
{
(x, y, z)|(2ΩC − A − Jp

E) < 0
}

with Jp
E = JE (0,x(0)). We call the subset F∗

f forbidden subregion of motion, as it represents

an under-estimation of the forbidden region. The forbidden subregions give useful information in

the entire interval [−π, π]. Because they shrink and expand as the true anomaly f goes from −πto

0 and from 0 to π (their boundaries are defined by the same equation of the pulsating curves). We

use them to formulate a necessary condition for transfer trajectories in the ER3BP:

Given a set of initial condition f0 = 2nπ;x0 = x (f0), a transfer trajectory between the pri-
maries cannot occur in the interval [2nπ − π, 2nπ + π] if L1 ∈ F∗

(2n−1)π and L1 ∈ F∗
(2n+1)π.

Similarly, given a set of initial condition f0 = π;x0 = x (π), Eq. (6) and Eq. (7) imply I(f ; f0) ≤
0 for all f ∈ [0, 2π]. We define the subregions of motion

A∗
f ⊂ Af , A∗

f = {x|(2ΩC − A − Ja
E) > 0}

with f ∈ [0, 2π] and J0
E = JE (0,x(0)).

Finally, if we know the state x at two consecutive apsidal positions of the primaries we can

compute both Ja
E and Jp

E , hence the low-velocity subregions

L∗
f =

{
(x, y, z)|(2ΩC − A − Jp

E) > 0, (2ΩC − A − Ja
E) < 0

}

This set is the complement to the subregions of motion and the forbidden subregions, and by

definition it includes the zero-velocity surfaces. For true anomaly intervals [fL, fU ] ⊂ [0, 2π] we

can still define low-velocity surfaces, by replacing Jp
E and Ja

E with JL
E = JE(fL) and JU

E (fU ).

Figure 6 show the subregions of motion on the xy plane of a third body in the Earth-Moon ER3BP

(e = 0.054, μ = 0.0123) in the interval [0, 2π]. The third-body is on a small quasi-periodic orbit

around L1. In this case the low-velocity subregions always include the quasi-periodic orbit.

§Assuming
˛̨
˛ dΩ∗

df

˛̨
˛ < ∞



Figure 6 Subregions of motion for a third body on a small L1 quasi-periodic orbit
of the Earth-Moon ER3BP. fMo is the true anomaly of the Moon. The subregions
of motion are plotted each 30o of true anomaly of Mercury. The white region is the
subregion of motion. The dark gray region is the forbidden subregion. The light gray
region is the low-velocity region.

PERIODIC ORBITS

In this section we show how to compute periodic orbits in the ER3BP. In particular, we compute

and study the stability of some orbits which we call elliptic halo orbits since they bifurcate from

special halo orbits of the CR3BP. We first introduce the periodic orbits in the ER3BP.

The right hand side of the equations of motion Eq. (3) is periodic with period 2π. Thus, periodic

solutions of the ER3BP must have principal period T = 2Nπ, N = 1, 2, . . . ; they are also periodic

in the inertial reference frame. In the context of the planar ER3BP, Moulton14 used these con-

siderations and the symmetry properties of the system Eq. (3) to formulate the Strong Periodicity



Criterion :

For an orbit to be periodic [in the planar ER3BP] it is sufficient that it has two perpendicular
crossing with the syzygy-axis, and that the crossings happen at moments when the two primaries
are at an apse, (i.e. , at maximum or minimum elongation, or apoapsis and periapsis).

In the late 1960es Broucke15 used Moulton’s criterion to compute planar orbits in the ER3BP. He

chose 150 orbits of the planar CR3BP with period T = 2Nπ as starting points, with N = 1, 2, 3, 4, 5
, and computed them in the planar ER3BP for different eccentricities using a continuation method.

In particular, each of the 150 orbits was continued into two branches of orbits, which he called

periapsis orbits and apoapsis orbits, depending on the true anomaly of the primaries at the starting

point on the syzygy axis (f = 0 or f = π).

We use a similar approach to compute elliptic halo orbits. We extend Moulton’s criterion and

Broucke’s approach as the elliptic halo orbits are 3D and in general have periods smaller than 2π.

First we consider the following symmetries of the system Eq. (3):

S1 : (kπ + f, x, y, z, ẋ, ẏ, ż) → (kπ − f, x,−y,−z,−ẋ, ẏ, ż)

S2 : (kπ + f, x, y, z, ẋ, ẏ, ż) → (kπ − f, x,−y, z,−ẋ, ẏ,−ż)

which we use to formulate the Elliptic Periodicity Conditions:

For an orbit to be periodic in the ER3BP, it is sufficient that it has two perpendicular crossing
with either the normal plane (from S1) or the syzygy axis (from S2), or both of them, when the
primaries are at an apse .

Second, we choose halo orbits with principal period TC = 2rπ, where r = N
M is the resonant

ratio between the number of the primary revolutions N and number of the third body revolutions

M . By assembling M revolutions of a halo orbit, we build an orbit with period TE = MTC = 2Nπ
which is a solution of Eq. (3) for e = 0, and which has 2M perpendicular crossings with the normal

plane (M left x-intercepts and M right x-intercepts).

If the first crossing of the orbit occurs when the primaries are an apse, then the M + 1th crossing

also occurs when the primaries are at an apse. More precisely, the M +1th crossing occurs Nπ after

the first crossing. Such orbit is an elliptic halo orbit for e = 0, and satisfies the Elliptic Periodicity

Condition as it has two perpendicular crossing with the normal plane when the primaries are at

an apse. Next we compute elliptic halo orbits for e > 0 using the eccentricity as a continuation

parameter and we impose a perpendicular crossing on the 1st and on the M +1th intercepts at fixed

times.

Different kinds of elliptic halo orbits can be assembled starting from the same halo orbit in the

CR3BP. For instance, if M is odd we can compute periapsis or apoapsis families depending on

whether the first crossing occurs at the periapse or apoapse as described by Broucke for M = 1.15

However, if M is even we can continue two new families of orbits, which we call the left and right

family, depending on whether the first crossing is a left x-intercept or a right x-intercept.

We apply our approach to two different cases. In the first case, we consider a system with a small

mass ratio μ ≈ 1e− 6, corresponding to the Mercury-Sun system, and choose as L1 halo orbit with

TC = 4
5π, i.e. N = 2 and M = 5. We build the elliptic halo orbit by assembling five revolutions



of the halo orbit (TE = 4π), and we compute the periapsis and apoapsis families for eccentricities

up to e ≈ 0.02. Figure 7 shows the two families, in both the rotating and inertial reference frames.

We also compute an orbit of the pericenter family for e ≈ 0.2, corresponding to the eccentricity

of Mercury’s orbit, and compare our solution to one integrated with the full ephemeris model - see

Figure 1.

Figure 7 Periapsis and apoapsis elliptic halo orbits in the ER3BP (e = 0.02) gen-
erated from a 2:5 halo orbit in the CR3BP. The first and second figure from the left
show the periapsis and apoapsis halo orbits in the rotating reference frame. The last
figure shows both orbits in the inertial reference frame.

Figure 8 Left and Right elliptic halo orbits in the ER3BP (0 < e < 0.3, μ ≈ 0.0123).
The dash lines are the L2 halo orbits in the CR3BP. The bold solid line is the elliptic
halo for e = 0.3. On the Left: ‘Left’ family that bifurcates from the L2 halo in the
pulsating reference frame. On the Right: ‘Right’ family that bifurcates from the L2
halo in the pulsating reference frame.

In the second case, we consider a system with a relatively high mass ratio: μ = 0.012, similar to



the Earth-Moon system, and choose a halo orbit orbit with period TC = π, i.e. N = 1 and M = 2.

We build the elliptic halo orbit by assembling two revolutions of the halo orbit, and we compute

the left and the right elliptic halo orbits for eccentricity up to e = 0.3. Note that when continuing

the orbit from e = 0 to e > 0, the principal period of the elliptic halo orbits changes from TC

to TE = 2TC . Also one single halo orbit generates two new elliptic halo orbits. Those elements

suggest that a period doubling bifurcation occurs at e = 0. In the next section we show that the

stability properties of the left and right elliptic halo orbits differ from those of the originating halo

orbit. Figure 8 shows the left and right families together with the family of halo orbits at e = 0.

Each color corresponds to an elliptic halo orbit computed with a distinct eccentricity.

Stability

In order to study the linear stability of the elliptic halo orbits, we briefly recall some important

results of Floquet’s theory. Consider a system of equations:

ẏ(t) = A(t)y(t) (8)

where A(t) is periodic with period T , and y ∈ R
n. Also consider a fundamental matrix ψ(t) for

the system Eq. (8), and the matrix E = ψ(0)−1ψ(T ) ¶. If E has n distinct eigenvalues λi, then

there are n solutions yi(t) = qi(t)eρi(t+T ), where qi(t) are periodic function with period T , and ρi

are the characteristic exponents associated to λi. Also, it can be shown that yi(t + T ) = λiyi(t),
and the eigenvalues λi determine the stability properties of the system Eq. (8).

We can now apply Floquet’s theory to the ER3BP. The linearized first order system of ODEs is:

δẋ(f) = A(f)δx(f)

where

A(f) =

[
0 I

∂2ωE
∂r2 2J

]

and:

∂2ωE

∂r2
=

∂2ΩC

∂r2
− e cos f

1 + e cos f

∂2Ω∗

∂r2
=

=
31−μ

r3
1

r̂1 ⊗ r̂1 + 3 μ
r3
2
r̂2 ⊗ r̂2 + (1 − 1−μ

r3
1

− μ
r3
2
)I
=

1 + e cos f
− ez ⊗ ez

The state transition matrix φ(f) is solution of the system:

φ̇(f) = A(f)φ(f) φ(f0) = I

¶Assume t0 = 0



In the ER3BP φ(f) is in fact a fundamental matrix ψ(t) for the system, and the matrix E is the

monodromy matrix M = φ(T ) and can be computed by integrating φ(f) or by using approximation

methods.16 As mentioned in the previous section, the eigenvalues of the monodromy matrix M still

come in reciprocal pairs, but there are no more unitary eigenvalues17 associated to perturbation

δx tangent to the trajectory. In the case of the left elliptic halo orbits of Figure 8 on the left, the

eigenvalues move on the unit circle, hinting at the existence of quasi-periodic orbits. In the case

of the right elliptic halo orbits of Figure 8 on the right, the eigenvalues move on the real axis

generating new stable and unstable manifolds; the stability properties of the halo orbits changes

when the eccentricity is e �= 0.

Figure 9 The real unitary eigenvalues of the halo orbit change as the eccentricity
changes. A pair of complex conjugated eigenvalues on the unit circle is generated
in the case of the left elliptic halo orbits (branches I), while a stable/unstable pair of
eigenvalues is generated in the case of the elliptic right halo orbits (branches II). The
left picture is schematic, while the right is the result of the numeric computation.

CONCLUSIONS

In this paper we defined several regions of motion and periodic orbits in the ER3BP. The Hill’s

zero-velocity surfaces in the CR3BP are replaced by the low-velocity regions, which divides the

subregions of motion from the forbidden subregions. Periodic trajectories are computed using a

continuation method, starting with orbits in the CR3BP with period synchronous to the period of

the primaries. We showed that different branches of periodic orbits bifurcates in the ER3BP and

that the new branches have different linear stability properties.
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